92 research outputs found

    Adversarial Sparse-View CBCT Artifact Reduction

    Full text link
    We present an effective post-processing method to reduce the artifacts from sparsely reconstructed cone-beam CT (CBCT) images. The proposed method is based on the state-of-the-art, image-to-image generative models with a perceptual loss as regulation. Unlike the traditional CT artifact-reduction approaches, our method is trained in an adversarial fashion that yields more perceptually realistic outputs while preserving the anatomical structures. To address the streak artifacts that are inherently local and appear across various scales, we further propose a novel discriminator architecture based on feature pyramid networks and a differentially modulated focus map to induce the adversarial training. Our experimental results show that the proposed method can greatly correct the cone-beam artifacts from clinical CBCT images reconstructed using 1/3 projections, and outperforms strong baseline methods both quantitatively and qualitatively

    Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease

    Full text link
    We propose an automatic method using dilated convolutional neural networks (CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR (CMR) of patients with congenital heart disease (CHD). Ten training and ten test CMR scans cropped to an ROI around the heart were provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive field of 131x131 voxels was trained for myocardium and blood pool segmentation in axial, sagittal and coronal image slices. Performance was evaluated within the HVSMR challenge. Automatic segmentation of the test scans resulted in Dice indices of 0.80±\pm0.06 and 0.93±\pm0.02, average distances to boundaries of 0.96±\pm0.31 and 0.89±\pm0.24 mm, and Hausdorff distances of 6.13±\pm3.76 and 7.07±\pm3.01 mm for the myocardium and blood pool, respectively. Segmentation took 41.5±\pm14.7 s per scan. In conclusion, dilated CNNs trained on a small set of CMR images of CHD patients showing large anatomical variability provide accurate myocardium and blood pool segmentations

    Adversarial training and dilated convolutions for brain MRI segmentation

    Full text link
    Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to distinguish from real images. In this study we use an adversarial training approach to improve CNN-based brain MRI segmentation. To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations. During training, this loss function is optimised together with the conventional average per-voxel cross entropy loss. The results show improved segmentation performance using this adversarial training procedure for segmentation of two different sets of images and using two different network architectures, both visually and in terms of Dice coefficients.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi

    Unsupervised learning for cross-domain medical image synthesis using deformation invariant cycle consistency networks

    Full text link
    Recently, the cycle-consistent generative adversarial networks (CycleGAN) has been widely used for synthesis of multi-domain medical images. The domain-specific nonlinear deformations captured by CycleGAN make the synthesized images difficult to be used for some applications, for example, generating pseudo-CT for PET-MR attenuation correction. This paper presents a deformation-invariant CycleGAN (DicycleGAN) method using deformable convolutional layers and new cycle-consistency losses. Its robustness dealing with data that suffer from domain-specific nonlinear deformations has been evaluated through comparison experiments performed on a multi-sequence brain MR dataset and a multi-modality abdominal dataset. Our method has displayed its ability to generate synthesized data that is aligned with the source while maintaining a proper quality of signal compared to CycleGAN-generated data. The proposed model also obtained comparable performance with CycleGAN when data from the source and target domains are alignable through simple affine transformations

    Iterative Segmentation from Limited Training Data: Applications to Congenital Heart Disease

    Full text link
    We propose a new iterative segmentation model which can be accurately learned from a small dataset. A common approach is to train a model to directly segment an image, requiring a large collection of manually annotated images to capture the anatomical variability in a cohort. In contrast, we develop a segmentation model that recursively evolves a segmentation in several steps, and implement it as a recurrent neural network. We learn model parameters by optimizing the interme- diate steps of the evolution in addition to the final segmentation. To this end, we train our segmentation propagation model by presenting incom- plete and/or inaccurate input segmentations paired with a recommended next step. Our work aims to alleviate challenges in segmenting heart structures from cardiac MRI for patients with congenital heart disease (CHD), which encompasses a range of morphological deformations and topological changes. We demonstrate the advantages of this approach on a dataset of 20 images from CHD patients, learning a model that accurately segments individual heart chambers and great vessels. Com- pared to direct segmentation, the iterative method yields more accurate segmentation for patients with the most severe CHD malformations.Comment: Presented at the Deep Learning in Medical Image Analysis Workshop, MICCAI 201

    Neural Style Transfer Improves 3D Cardiovascular MR Image Segmentation on Inconsistent Data

    Full text link
    Three-dimensional medical image segmentation is one of the most important problems in medical image analysis and plays a key role in downstream diagnosis and treatment. Recent years, deep neural networks have made groundbreaking success in medical image segmentation problem. However, due to the high variance in instrumental parameters, experimental protocols, and subject appearances, the generalization of deep learning models is often hindered by the inconsistency in medical images generated by different machines and hospitals. In this work, we present StyleSegor, an efficient and easy-to-use strategy to alleviate this inconsistency issue. Specifically, neural style transfer algorithm is applied to unlabeled data in order to minimize the differences in image properties including brightness, contrast, texture, etc. between the labeled and unlabeled data. We also apply probabilistic adjustment on the network output and integrate multiple predictions through ensemble learning. On a publicly available whole heart segmentation benchmarking dataset from MICCAI HVSMR 2016 challenge, we have demonstrated an elevated dice accuracy surpassing current state-of-the-art method and notably, an improvement of the total score by 29.91\%. StyleSegor is thus corroborated to be an accurate tool for 3D whole heart segmentation especially on highly inconsistent data, and is available at https://github.com/horsepurve/StyleSegor.Comment: 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019) early accep

    RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours

    Full text link
    Accurate synthesis of a full 3D MR image containing tumours from available MRI (e.g. to replace an image that is currently unavailable or corrupted) would provide a clinician as well as downstream inference methods with important complementary information for disease analysis. In this paper, we present an end-to-end 3D convolution neural network that takes a set of acquired MR image sequences (e.g. T1, T2, T1ce) as input and concurrently performs (1) regression of the missing full resolution 3D MRI (e.g. FLAIR) and (2) segmentation of the tumour into subtypes (e.g. enhancement, core). The hypothesis is that this would focus the network to perform accurate synthesis in the area of the tumour. Experiments on the BraTS 2015 and 2017 datasets [1] show that: (1) the proposed method gives better performance than state-of-the-art methods in terms of established global evaluation metrics (e.g. PSNR), (2) replacing real MR volumes with the synthesized MRI does not lead to significant degradation in tumour and sub-structure segmentation accuracy. The system further provides uncertainty estimates based on Monte Carlo (MC) dropout [11] for the synthesized volume at each voxel, permitting quantification of the system's confidence in the output at each location.Comment: Accepted at Workshop on Simulation and Synthesis in Medical Imaging - SASHIMI2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2018

    Empirical Bayesian Mixture Models for Medical Image Translation

    Get PDF
    Automatically generating one medical imaging modality from another is known as medical image translation, and has numerous interesting applications. This paper presents an interpretable generative modelling approach to medical image translation. By allowing a common model for group-wise normalisation and segmentation of brain scans to handle missing data, the model allows for predicting entirely missing modalities from one, or a few, MR contrasts. Furthermore, the model can be trained on a fairly small number of subjects. The proposed model is validated on three clinically relevant scenarios. Results appear promising and show that a principled, probabilistic model of the relationship between multi-channel signal intensities can be used to infer missing modalities -- both MR contrasts and CT images.Comment: Accepted to the Simulation and Synthesis in Medical Imaging (SASHIMI) workshop at MICCAI 201
    • …
    corecore